The project aims to optimize the placement of dampers in an automotive suspension system to minimize an objective function that balances passenger comfort, vehicle vibration, handling, and suspension stroke constraints.
The system is modeled as a half-car with a sprung mass (vehicle body) and two unsprung masses (wheels), driven over a random road profile. Bayesian optimization is used to tune parameters, particularly damper placement parameters: motion ratio and inclination angle.
Given:
Functions:
The half-car model has 10 states:
Vehicle parameters:
Suspension Displacements:
\[ z_{sf} = z_s + \frac{L}{2} \theta - \frac{T}{2} \phi \quad (\text{front}) \]
\[ z_{sr} = z_s - \frac{L}{2} \theta + \frac{T}{2} \phi \quad (\text{rear}) \]
Relative Velocities:
\[ v_{\text{rel},f} = v_s + \frac{L}{2} \omega_y - \frac{T}{2} \omega_x - v_{uf} \quad (\text{front}) \]
\[ v_{\text{rel},r} = v_s - \frac{L}{2} \omega_y + \frac{T}{2} \omega_x - v_{ur} \quad (\text{rear}) \]
Forces:
\[ F_{\text{spring},f} = -k_s (z_{sf} - z_{uf}) - F_{\text{preload}} \]
\[ F_{\text{spring},r} = -k_s (z_{sr} - z_{ur}) - F_{\text{preload}} \]
Gas pressure: \( k_s' = k_s (1 + 0.01 p_{\text{gas}}) \).
\[ F_{\text{tire},f} = -k_t (z_{uf} - z_{rf}) - C_t (v_{uf} - \dot{z}_{rf}) \]
\[ F_{\text{tire},r} = -k_t (z_{ur} - z_{rr}) - C_t (v_{ur} - \dot{z}_{rr}) \]
\[ F_{\text{roll}} = -k_{\text{roll}} \phi \]
Equations of Motion:
\[ m_s \ddot{z}_s = F_{\text{spring},f} + F_{\text{spring},r} + F_{\text{damper},f} + F_{\text{damper},r} \]
\[ \ddot{z}_s = \frac{F_{\text{spring},f} + F_{\text{spring},r} + F_{\text{damper},f} + F_{\text{damper},r}}{m_s} \]
\[ I_y \ddot{\theta} = \left( F_{\text{spring},f} + F_{\text{damper},f} \right) \frac{L}{2} - \left( F_{\text{spring},r} + F_{\text{damper},r} \right) \frac{L}{2} \]
\[ \ddot{\theta} = \frac{\left( F_{\text{spring},f} + F_{\text{damper},f} \right) \frac{L}{2} - \left( F_{\text{spring},r} + F_{\text{damper},r} \right) \frac{L}{2}}{I_y} \]
\[ I_x \ddot{\phi} = \left( F_{\text{spring},r} - F_{\text{spring},f} \right) \frac{T}{2} + F_{\text{roll}} \]
\[ \ddot{\phi} = \frac{\left( F_{\text{spring},r} - F_{\text{spring},f} \right) \frac{T}{2} - k_{\text{roll}} \phi}{I_x} \]
\[ m_u \ddot{z}_{uf} = -F_{\text{spring},f} - F_{\text{damper},f} + F_{\text{tire},f} \]
\[ m_u \ddot{z}_{ur} = -F_{\text{spring},r} - F_{\text{damper},r} + F_{\text{tire},r} \]
States updated via Euler integration:
\[ v_s(t + \Delta t) = v_s(t) + \ddot{z}_s \Delta t, \quad z_s(t + \Delta t) = z_s(t) + v_s(t) \Delta t \]
Damping force:
\[ F_{\text{damper}} = -C_{\text{base}} v_{\text{rel}} - F_{\text{hysteresis}} \]
Damper Placement:
\[ F_{\text{damper}} \leftarrow F_{\text{damper}} \cdot \text{MR} \]
\[ C_c' = C_c \cdot \text{MR} \cdot \cos(\theta), \quad C_r' = C_r \cdot \text{MR} \cdot \cos(\theta) \]
\[ J = 0.35 J_{\text{comfort}} + 0.25 J_{\text{vibration}} + 0.25 J_{\text{handling}} + 0.15 J_{\text{constraints}} \]
\[ J_{\text{comfort}} = \sqrt{\frac{1}{N} \sum_{t=1}^N a_s^2 \cdot w(a_s)}, \quad w(a_s) = 1 \text{ if } |a_s| < 1, \text{ else } 1.4 \]
\[ J_{\text{vibration}} = \frac{1}{M} \sum_{k=1}^M \text{PSD}(z_s, k) \quad (0.5–20 \, \text{Hz}) \]
\[ J_{\text{handling}} = 0.4 |\theta|_{\text{max}} + 0.4 |\phi|_{\text{max}} + 0.2 \max(0, -F_{\text{tire,min}}) \]
\[ J_{\text{constraints}} = 1000 \cdot \max(0, s_{\text{max}} - s_{\text{limit}}) \]
\( s_{\text{max}} = \max(|z_{sf} - z_{uf}|, |z_{sr} - z_{ur}|) \).
Bayesian optimization:
\[ k(x_1, x_2) = \sigma_f^2 \exp\left( -\frac{\|x_1 - x_2\|^2}{2 l^2} \right) \]
\[ \text{EI}(x) = (J_{\text{best}} - \mu(x)) \Phi(z) + \sigma(x) \phi(z), \quad z = \frac{J_{\text{best}} - \mu(x)}{\sigma(x)} \]
Parameters:
Damping Force:
At \( t \), assume \( v_{\text{rel},f} = 0.8 \, \text{m/s} \), \( T = 25 \, \text{°C} \).
\[ C_{\text{base}} = 5000 (1 - 0.005 (25 - 20)) = 5000 \cdot 0.975 = 4875 \, \text{Ns/m} \]
\[ F_{\text{hysteresis}} = 0.05 \cdot 0.8 = 0.04 \, \text{N} \]
\[ F_{\text{base}} = -4875 \cdot 0.8 = -3900 \, \text{N} \]
\[ C_r' = 5000 \cdot 1.2 \cdot \cos(10^\circ) = 5000 \cdot 1.2 \cdot 0.9848 = 5908.8 \, \text{Ns/m} \]
\[ F_{\text{damper},f} = (-3900 - 0.04) \cdot 1.2 \cdot 0.9848 \approx -4618.8 \, \text{N} \]
Spring Force:
Assume \( z_{sf} - z_{uf} = 0.02 \, \text{m} \).
\[ k_s' = 30,000 (1 + 0.01 \cdot 15) = 34,500 \, \text{N/m} \]
\[ F_{\text{spring},f} = -34,500 \cdot 0.02 - 500 = -690 - 500 = -1190 \, \text{N} \]
Tire Force:
Assume \( z_{uf} - z_{rf} = 0.01 \, \text{m} \), \( v_{uf} - \dot{z}_{rf} = 0.5 \, \text{m/s} \).
\[ F_{\text{tire},f} = -200,000 \cdot 0.01 - 200 \cdot 0.5 = -2000 - 100 = -2100 \, \text{N} \]
Acceleration:
Assume similar rear forces:
\[ \ddot{z}_s = \frac{(-1190 - 1190) + (-4618.8 - 4618.8)}{1200} \approx \frac{-11,617.6}{1200} \approx -9.68 \, \text{m/s}^2 \]
Objective (Single Step):
Assume \( \theta = 0.01 \, \text{rad} \), \( \phi = 0.005 \, \text{rad} \), \( F_{\text{tire,min}} = -2100 \, \text{N} \), \( s_{\text{max}} = 0.09 \, \text{m} \).
\[ J_{\text{comfort}} \approx \sqrt{9.68^2 \cdot 1.4} \approx \sqrt{131.3} \approx 11.46 \]
\[ J_{\text{handling}} = 0.4 \cdot 0.01 + 0.4 \cdot 0.005 + 0.2 \cdot 2100 = 420.006 \]
\[ J_{\text{constraints}} = 1000 \cdot (0.09 - 0.08) = 10 \]
Output:
Damper Placement:
The half-car model and Bayesian optimization optimize damper placement effectively. Motion ratio and inclination angle adjust damping force transmission, balancing comfort and handling. The physics-based simulation is realistic, and the GP minimizes evaluations.